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Background

Optimization Objectives for VLMs:

mitigating catastrophic forgetting,

optimizing performance on the current task

preserving zero-shot capabilities

Conventional continual learning approaches are insufficient for VLM fine-
tuning, as they struggle to maintain the crucial zero-shot capabilities
Continual learning methods designed for VLMs either requires reference

dataset or the careful tuning of multiple hyperparameters
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Motivation

* Due to limited memory resources for storing data and models, continual learning
faces the critical challenge of balancing stability and plasticity.

What if we could “preserve all fine-tuned models” with minimal memory overhead?

 However, simply retaining past fine-tuned models falls short in addressing

knowledge transfer and generalization.

Could we leverage the capabilities of pretrained VLM to address these challenges?
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Methods

* We introduce model fusion to VLMs and propose a novel Decoupling-

Unifying framework compatible with PEFT and full-finetune paradigms.
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Methods

Delta Models Continually Fusion at Training Stage :

.............................................................................................

1. Tuning Individually :

finetune pre-trained VLM on Current Dataset t to get 8* Task Triggers |~ { TekSpoafcad }Vﬁ » *
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1. Computing Prototypes :

for each category in each task, we save its prototype during training -

2. Aggregating Predictions : ST

e for atestimage with task-id we directly use the corresponding R —
reconstructed model to make prediction —

 for atest image without task-id or from unseen tasks —
use pre-trained VLM to extract its image feature :::z

Methods

Semantic-Based Aggregating Mechanism at Inference Stage:

calculate cosine similarity between test feature with prototypes
for each task select highest similarity score then choose K-highest tasks

weighted fuse the predictions of corresponding selected K models
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Experiments : MTIL

We evaluate our method on Multi-domain Task Incremental Learning (MTIL) benchmark
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S O K - o 7
Zero-shot 243 884 68.2 44.6 54.9 71.0 88.5 594 89.0 64.7 65.2 653
Individual FT 62.0 95.1 89.6 79.5 98.9 97.5 92.7 99.6 94.7 89.6 81.8 89.2
ZSCL - 86.0 67.4 454 50.4 69.1 87.6 61.8 86.8 60.1 66.8 68.1
ks Dual-RAIL - 884 68.2 44.6 54.9 71.0 88.5 59.6 89.0 64.7 65.2 69.4
E DPeCLIP - 88.2 67.2 44.7 54.0 70.6 88.2 59.5 89.0 64.7 64.8 69.1
g MulKlI - 87.8 69.0 46.7 51.8 71.3 88.3 64.7 89.7 634 68.1 70.1
= ConDU(FT) - 88.1 68.9 464 57.1 714 88.7 65.5 89.3 65.0 67.8 70.8
ConDU(LoRA) - 88.1 68.9 45.7 57.0 71.3 88.8 61.2 89.3 65.1 67.8 70.3
ZSCL 45.1 92.0 80.1 64.3 79.5 81.6 89.6 75.2 88.9 64.7 68.0 754
% Dual-RAIL 525 96.0 80.6 70.4 81.3 86.3 89.1 73.9 90.2 68.5 66.5 77.8
) DPeCLIP 499 949 82.4 69.4 82.2 84.3 90.0 74.0 90.4 68.3 66.3 77.5
4 MulKlI 525 93.6 79.4 67.0 79.8 83.9 89.6 77.1 91.2 67.1 69.1 77.3
< ConDU(FT) 59.6 934 83.7 68.1 83.4 83.7 90.1 76.7 90.6 68.6 68.6 78.8
ConDU(LoRA) 519 94.9 84.4 69.8 81.1 84.4 90.0 71.3 89.5 69.0 69.3 78.3
ZSCL 40.6 92.2 81.3 70.5 94.8 90.5 91.9 98.7 93.9 85.3 80.2 83.6
Dual-RAIL 525 96.8 83.3 80.1 96.4 99.0 89.9 98.8 93.5 85.5 79.2 86.8
'g DPcCLIP 499 95.6 85.8 78.6 98.4 95.8 92.1 99.4 94.0 84.5 81.7 86.9
— MulKI 49.7 93.0 82.8 73.7 96.2 92.3 90.4 99.0 94.8 85.2 78.9 85.1
ConDU(FT) 58.6 93.7 86.6 76.1 98.2 934 91.9 99.6 94.8 849 80.5 87.1
ConDU(LoRA) 48.9 95.2 87.8 78.5 96.3 95.2 91.7 97.6 93.0 853 78.8 86.2
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Experiments : few-shot MTIL

We evaluate our method on few-shot Multi-domain Task Incremental Learning (few-shot MTIL) benchmark
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Method S '§ eC‘ E ‘g z § g g g > Average
b = - (& = é H 5 b= © =
S & m (@) (7
Zero-shot 243 88.4 68.2 44.6 54.9 71.0 88.5 59.6 89.0 64.7 65.2 65.3
Individual FT 30.6 935 76.8 65.1 91.7 92.9 83.3 96.6 849 654 71.3 71.5
Continual FT - 72.8 53.0 36.4 354 433 68.4 474 72.6 30.0 52.7 51.2
& WISE-FT - 77.6 60.0 41.3 394 53.0 76.6 58.1 35 373 58.2 57.7
r.g ZSCL - 84.0 68.1 448 46.8 63.6 849 614 814 555 62.2 65.3
g MoE - 87.9 68.2 44.1 48.1 64.7 88.8 69.0 89.1 64.5 65.1 68.9
= Dual-RAIL - 884 68.2 44.6 54.9 71.0 88.5 59.6 89.0 64.7 65.2 694
ConDU(FT) - 88.0 69.5 45.6 544 71.1 88.7 62.2 88.9 644 66.6 70.0
ConDU(LoRA) - 88.1 68.5 45.6 564 71.2 89.0 64.0 88.8 649 66.4 70.3
Continual FT 28.1 86.4 59.1 52.8 55.8 62.0 70.2 64.7 75.5 35.0 54.0 58.5
= WISE-FT 32.0 87.7 61.0 55.8 68.1 69.3 76.8 71.5 77.6 420 593 63.7
&0 ZSCL 28.2 88.6 66.5 53.5 56.3 734 83.1 56.4 824 57.5 62.9 644
& MoE 30.0 89.6 73.9 58.7 69.3 793 88.1 76.5 89.1 65.3 65.8 714
Z Dual-RAIL 36.0 94.2 70.9 58.8 70.6 843 88.5 70.3 89.7 66.5 65.8 723
ConDU(FT) 33.1 90.5 74.1 58.3 76.2 81.0 87.9 73.4 88.0 64.8 67.1 72.3
ConDU(LoRA) 324 92.1 754 58.8 75.1 829 87.3 74.0 89.3 65.1 67.0 72.7
Continual FT 27.8 86.9 60.1 58.4 56.6 75.7 73.8 93.1 82.5 57.0 66.8 67.1
WISE-FT 30.8 88.9 59.6 60.3 80.9 81.7 77.1 94.9 83.2 62.8 70.0 71.9
- ZSCL 26.8 88.5 63.7 55.7 60.2 82.1 82.6 58.6 85.9 66.7 70.4 67.4
] MoLE: 30.1 89.3 749 64.0 82.3 894 87.1 89.0 89.1 69.5 72.5 76.1
- Dual-RAIL 36.0 94.8 715 64.1 79.5 95.3 88.5 89.4 91.5 74.6 71.3 779
ConDU(FT) 33.3 90.7 75.0 63.1 88.8 88.6 87.0 91.8 85.6 66.5 71.9 76.6
ConDU(LoRA) 31.8 924 76.7 63.4 86.8 91.8 85.6 93.9 90.3 68.1 70.9
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Experiments : task-agnostic MTIL

We evaluate our method on task-agnostic Multi-domain Task Incremental Learning benchmark

& S E > @ - & o
Method E g ﬁ E g é E ; “3 3 % Average
S @) K o A
Zero-shot 244 63.7 41.0 39.3 53.0 70.0 88.4 39.6 88.9 64.5 63.3 57.8
Individual FT 62.0 95.1 89.6 79.5 98.9 97.5 92.7 99.6 94.7 89.6 81.8 89.2
Continual-FT 25.5 815 59.1 53.2 64.7 51.8 63.2 64.3 69.7 318 49.7 559
ZSCL 46.3 68.3 74.3 56.3 79.1 814 89.5 74.0 89.0 644 67.5 71.8
2 MoLE 37.2 65.3 79.5 67.6 19.7 83.1 80.5 74.0 88.5 67.5 65.3 66.2
= Primal-RAIL 424 88.5 57.1 55.7 64.7 80.7 83.0 62.9 848 68.7 63.7 68.4
s Dual-RAIL 45.0 88.8 57.8 56.8 66.2 81.0 85.2 63.4 87.8 689 64.7 69.6
2 CoLeCLIP 482 77.8 71.7 65.7 76.8 83.8 89.6 72.2 90.3 68.0 66.4 73.7
DPeCLIP 499 853 81.5 65.3 81.6 84.3 89.9 74.0 90.4 68.3 66.2 76.1
ConDU(FT) 59.7 904 83.6 67.0 81.8 83.6 90.2 75.0 90.8 68.7 68.4 78.1
ConDU(LoRA) 51.8 944 84.2 68.8 80.0 84.1 90.0 77.1 88.9 68.8 69.3 78.0
Continual-FT 31.0 89.3 65.8 67.3 88.9 71.1 85.6 99.6 929 77.3 81.1 77.3
ZSCL 425 644 67.2 54.8 89.7 904 91.7 95.8 934 85.2 78.3 77.6
MoLE 34.1 47.6 80.9 75.5 0.0 93.0 70.8 99.4 86.4 79.8 68.9 66.9
- Primal-RAIL 419 94.0 73.7 67.8 84.4 97.0 83.4 92.6 86.9 75.7 714 79.0
E Dual-RAIL 45.2 944 74.7 70.7 87.3 97.9 86.5 92.8 91.9 81.7 76.7 81.8
ColLeCLIP 48.1 73.1 65.2 69.6 84.0 96.2 90.9 94.6 93.5 82.6 79.3 79.7
DPcCLIP 499 84.2 83.2 71.1 97.0 95.8 92.0 994 93.9 84.5 80.2 84.6
ConDU(FT) 58.6 90.8 86.3 74.0 96.3 934 91.9 99.6 94.7 84.9 80.1 86.4
ConDU(LoRA) 48.4 94.4 87.3 77.1 94.1 94.3 90.8 96.2 90.8 843 78.1 85.1




Analysis : Theoretical Analysis

Theorem F.3 (Convergence of Iteration). Given n initial delta models 5, where i € [
after infinitely many iterations, if the relative order of \' values remains unchanged and Vi # j,

{k | Mj. =1 and M] = 1} # @, then these n delta models will converge to a uniquely determined
set of n delta models.

) ’I’L],

Theorem F.5. If an initial delta model 6 is given, and during the n-th operation, a new delta model
0™ is added, and the current set of delta models {6"(n) | i € {1,...,n+ 1}} undergoes one iteration,

then under the same conditions as Theorem F.3, and assuming all 0" are independent and identically
distributed, we have:

1. The probability of any M k( ) changing becomes negligible as n increases.

2. For each position in €,,;(j), the probability of selecting a different corresponding delta
model is small, and even if changes occur, their impact is minimal.

Corollary F.6. Under the same conditions as Theorem F.5, the following holds:

lim — g ||5’ n —5 (n—1) ||1
n—oo N,

Detailed Theoretical Analysis and Proof can be Found from Our Paper https://arxiv.org/pdf/2503.10705



Analysis : Visualization

We perform t-SNE visualization of features extracted from training data of 10 categories from Task1 ( AirCraft )

o a0 * From Figl and Fig2, the fine-tuned task-

class 1

%
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L A N \ class 3 specific model 1 shows significantly better
o iage ' el . class 4

T AT RO RS x class 5

s g cass o data discrimination onTaskl compared to the
DX \.- ° z;:::s

o class? pre-trained VLM
Fig 1:Pre-trained Model Fig 2:Session 1

* Fig3 to Fig5 indicates that the task-specific
i - i & - "535:""??:": - model reconstructed by ConDU closely

AT g § ’”‘? iz ; matches the representation ability of the
e "N e ". \_\I {’ . \

\_ ) \-oe/ model obtained through initial fine-tuning.
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