Enhanced Continual Learning of Vision-Language Models with Model Fusion Haoyuan Gao *, Zicong Zhang *, Yuqi Wei , Linglan Zhao , Guilin Li , Yexin Li , Linghe Kong , Weiran Huang † Speaker: Zicong Zhang 7th April 2025 SJTU MIFA LAB ## Background - Optimization Objectives for VLMs: mitigating catastrophic forgetting, optimizing performance on the current task preserving zero-shot capabilities - Conventional continual learning approaches are insufficient for VLM finetuning, as they struggle to maintain the crucial zero-shot capabilities - Continual learning methods designed for VLMs either requires reference dataset or the careful tuning of multiple hyperparameters MTT ZSJTU N • ## Motivation Due to limited memory resources for storing data and models, continual learning faces the critical challenge of balancing stability and plasticity. What if we could "preserve all fine-tuned models" with minimal memory overhead? However, simply retaining past fine-tuned models falls short in addressing knowledge transfer and generalization. Could we leverage the capabilities of pretrained VLM to address these challenges? ## Methods We introduce model fusion to VLMs and propose a novel **Decoupling- Unifying framework** compatible with PEFT and full-finetune paradigms. ## Methods ### **Delta Models Continually Fusion at Training Stage:** #### **Tuning Individually:** finetune pre-trained VLM on Current Dataset t to get θ^t subtracting θ^t from pre-trained model θ^0 to obtain delta model $\delta^t = \theta^t - \theta^0$ #### **Decoupling Unified Model:** apply Task Triggers on Unified Model to reconstruct models $$\tilde{\delta}^i = \lambda^i M^i \odot \delta^{1:t} \qquad \qquad \tilde{\theta}^i = \tilde{\delta}^i + \theta^0$$ $$\tilde{\theta}^i = \tilde{\delta}^i + \theta^0$$ #### **Unifying Models:** combine reconstructed models $\tilde{\delta}^i$ and δ^t to get unified delta model $\delta^{1:t} = \text{unify}(\tilde{\delta}^1, \tilde{\delta}^2 \cdots \delta^t)$ ## Methods ### **Semantic-Based Aggregating Mechanism at Inference Stage:** 1. Computing Prototypes: for each category in each task, we save its prototype during training - 2. Aggregating Predictions: - for a test image with task-id we directly use the corresponding reconstructed model to make prediction - for a test image without task-id or from unseen tasks use pre-trained VLM to extract its image feature calculate cosine similarity between test feature with prototypes for each task select highest similarity score then choose K-highest tasks weighted fuse the predictions of corresponding selected K models # Experiments: MTIL We evaluate our method on Multi-domain Task Incremental Learning (MTIL) benchmark | | Method | Aircraft | Caltech101 | CIFAR100 | DTD | EuroSAT | Flowers | Food | MNIST | OxfordPet | Cars | SUN397 | Average | |----------|---|--|--|--|--|--|--|--|--|--|--|--|---| | | Zero-shot
Individual FT | 24.3
62.0 | 88.4
95.1 | 68.2
89.6 | 44.6
79.5 | 54.9
98.9 | 71.0
97.5 | 88.5
92.7 | 59.4
99.6 | 89.0
94.7 | 64.7
89.6 | 65.2
81.8 | 65.3
89.2 | | Transfer | ZSCL Dual-RAIL DPeCLIP MulKI ConDU(FT) ConDU(LoRA) | - | 86.0
88.4
88.2
87.8
88.1
88.1 | 67.4
68.2
67.2
69.0
68.9
68.9 | 45.4
44.6
44.7
46.7
46.4
45.7 | 50.4
54.9
54.0
51.8
57.1
57.0 | 69.1
71.0
70.6
71.3
71.4
71.3 | 87.6
88.5
88.2
88.3
88.7
88.8 | 61.8
59.6
59.5
64.7
65.5
61.2 | 86.8
89.0
89.0
89.7
89.3 | 60.1
64.7
64.7
63.4
65.0
65.1 | 66.8
65.2
64.8
68.1
67.8
67.8 | 68.1
69.4
69.1
70.1
70.8
70.3 | | Average | ZSCL Dual-RAIL DPeCLIP MulKI ConDU(FT) ConDU(LoRA) | 45.1
52.5
49.9
52.5
59.6
51.9 | 92.0
96.0
94.9
93.6
93.4
94.9 | 80.1
80.6
82.4
79.4
83.7
84.4 | 64.3
70.4
69.4
67.0
68.1
69.8 | 79.5
81.3
82.2
79.8
83.4
81.1 | 81.6
86.3
84.3
83.9
83.7
84.4 | 89.6
89.1
90.0
89.6
90.1
90.0 | 75.2
73.9
74.0
77.1
76.7
77.3 | 88.9
90.2
90.4
91.2
90.6
89.5 | 64.7
68.5
68.3
67.1
68.6
69.0 | 68.0
66.5
66.3
69.1
68.6
69.3 | 75.4
77.8
77.5
77.3
78.8
78.3 | | Last | ZSCL
Dual-RAIL
DPeCLIP
MulKI
ConDU(FT)
ConDU(LoRA) | 40.6
52.5
49.9
49.7
58.6
48.9 | 92.2
96.8
95.6
93.0
93.7
95.2 | 81.3
83.3
85.8
82.8
86.6
87.8 | 70.5
80.1
78.6
73.7
76.1
78.5 | 94.8
96.4
98.4
96.2
98.2
96.3 | 90.5
99.0
95.8
92.3
93.4
95.2 | 91.9
89.9
92.1
90.4
91.9
91.7 | 98.7
98.8
99.4
99.0
99.6
97.6 | 93.9
93.5
94.0
94.8
94.8
93.0 | 85.3
85.5
84.5
85.2
84.9
85.3 | 80.2
79.2
81.7
78.9
80.5
78.8 | 83.6
86.8
86.9
85.1
87.1
86.2 | # Experiments : few-shot MTIL We evaluate our method on few-shot Multi-domain Task Incremental Learning (few-shot MTIL) benchmark | | Method | Aircraft | Caltech101 | CIFAR100 | DTD | EuroSAT | Flowers | Food | MNIST | OxfordPet | Cars | SUN397 | Average | |----------|---|--|--|--|--|--|--|--|--|--|--|--|--| | | Zero-shot
Individual FT | 24.3
30.6 | 88.4
93.5 | 68.2
76.8 | 44.6
65.1 | 54.9
91.7 | 71.0
92.9 | 88.5
83.3 | 59.6
96.6 | 89.0
84.9 | 64.7
65.4 | 65.2
71.3 | 65.3
77.5 | | Transfer | Continual FT
WiSE-FT
ZSCL
MoE
Dual-RAIL
ConDU(FT)
ConDU(LoRA) | | 72.8
77.6
84.0
87.9
88.4
88.0
88.1 | 53.0
60.0
68.1
68.2
68.2
69.5
68.5 | 36.4
41.3
44.8
44.1
44.6
45.6
45.6 | 35.4
39.4
46.8
48.1
54.9
54.4
56.4 | 43.3
53.0
63.6
64.7
71.0
71.1
71.2 | 68.4
76.6
84.9
88.8
88.5
88.7
89.0 | 47.4
58.1
61.4
69.0
59.6
62.2
64.0 | 72.6
75.5
81.4
89.1
89.0
88.9
88.8 | 30.0
37.3
55.5
64.5
64.7
64.4
64.9 | 52.7
58.2
62.2
65.1
65.2
66.6
66.4 | 51.2
57.7
65.3
68.9
69.4
70.0
70.3 | | Average | Continual FT WiSE-FT ZSCL MoE Dual-RAIL ConDU(FT) ConDU(LoRA) | 28.1
32.0
28.2
30.0
36.0
33.1
32.4 | 86.4
87.7
88.6
89.6
94.2
90.5
92.1 | 59.1
61.0
66.5
73.9
70.9
74.1
75.4 | 52.8
55.8
53.5
58.7
58.8
58.3
58.8 | 55.8
68.1
56.3
69.3
70.6
76.2
75.1 | 62.0
69.3
73.4
79.3
84.3
81.0
82.9 | 70.2
76.8
83.1
88.1
88.5
87.9
87.3 | 64.7
71.5
56.4
76.5
70.3
73.4
74.0 | 75.5
77.6
82.4
89.1
89.7
88.0
89.3 | 35.0
42.0
57.5
65.3
66.5
64.8
65.1 | 54.0
59.3
62.9
65.8
65.8
67.1
67.0 | 58.5
63.7
64.4
71.4
72.3
72.3
72.7 | | Last | Continual FT
WiSE-FT
ZSCL
MoE
Dual-RAIL
ConDU(FT)
ConDU(LoRA) | 27.8
30.8
26.8
30.1
36.0
33.3
31.8 | 86.9
88.9
88.5
89.3
94.8
90.7
92.4 | 60.1
59.6
63.7
74.9
71.5
75.0
76.7 | 58.4
60.3
55.7
64.0
64.1
63.1
63.4 | 56.6
80.9
60.2
82.3
79.5
88.8
86.8 | 75.7
81.7
82.1
89.4
95.3
88.6
91.8 | 73.8
77.1
82.6
87.1
88.5
87.0
85.6 | 93.1
94.9
58.6
89.0
89.4
91.8
93.9 | 82.5
83.2
85.9
89.1
91.5
85.6
90.3 | 57.0
62.8
66.7
69.5
74.6
66.5
68.1 | 66.8
70.0
70.4
72.5
71.3
71.9
70.9 | 67.1
71.9
67.4
76.1
77.9
76.6
77.4 | # Experiments: task-agnostic MTIL We evaluate our method on task-agnostic Multi-domain Task Incremental Learning benchmark | | Method | Aircraft | Caltech101 | CIFAR100 | DTD | EuroSAT | Flowers | Food | MNIST | OxfordPet | Cars | SUN397 | Average | |---------|----------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | | Zero-shot
Individual FT | 24.4
62.0 | 63.7
95.1 | 41.0
89.6 | 39.3
79.5 | 53.0
98.9 | 70.0
97.5 | 88.4
92.7 | 39.6
99.6 | 88.9
94.7 | 64.5
89.6 | 63.3
81.8 | 57.8
89.2 | | | Continual-FT | 25.5 | 81.5 | 59.1 | 53.2 | 64.7 | 51.8 | 63.2 | 64.3 | 69.7 | 31.8 | 49.7 | 55.9 | | | ZSCL | 46.3 | 68.3 | 74.3 | 56.3 | 79.1 | 81.4 | 89.5 | 74.0 | 89.0 | 64.4 | 67.5 | 71.8 | | 43 | MoE | 37.2 | 65.3 | 79.5 | 67.6 | 19.7 | 83.1 | 80.5 | 74.0 | 88.5 | 67.5 | 65.3 | 66.2 | | Average | Primal-RAIL | 42.4 | 88.5 | 57.1 | 55.7 | 64.7 | 80.7 | 83.0 | 62.9 | 84.8 | 68.7 | 63.7 | 68.4 | | e | Dual-RAIL | 45.0 | 88.8 | 57.8 | 56.8 | 66.2 | 81.0 | 85.2 | 63.4 | 87.8 | 68.9 | 64.7 | 69.6 | | A | CoLeCLIP | 48.2 | 77.8 | 71.7 | 65.7 | 76.8 | 83.8 | 89.6 | 72.2 | 90.3 | 68.0 | 66.4 | 73.7 | | | DPeCLIP | 49.9 | 85.3 | 81.5 | 65.3 | 81.6 | 84.3 | 89.9 | 74.0 | 90.4 | 68.3 | 66.2 | 76.1 | | | ConDU(FT) | 59.7 | 90.4 | 83.6 | 67.0 | 81.8 | 83.6 | 90.2 | 75.0 | 90.8 | 68.7 | 68.4 | 78.1 | | | ConDU(LoRA) | 51.8 | 94.4 | 84.2 | 68.8 | 80.0 | 84.1 | 90.0 | 77.1 | 88.9 | 68.8 | 69.3 | 78.0 | | | Continual-FT | 31.0 | 89.3 | 65.8 | 67.3 | 88.9 | 71.1 | 85.6 | 99.6 | 92.9 | 77.3 | 81.1 | 77.3 | | | ZSCL | 42.5 | 64.4 | 67.2 | 54.8 | 89.7 | 90.4 | 91.7 | 95.8 | 93.4 | 85.2 | 78.3 | 77.6 | | | MoE | 34.1 | 47.6 | 80.9 | 75.5 | 0.0 | 93.0 | 70.8 | 99.4 | 86.4 | 79.8 | 68.9 | 66.9 | | + | Primal-RAIL | 41.9 | 94.0 | 73.7 | 67.8 | 84.4 | 97.0 | 83.4 | 92.6 | 86.9 | 75.7 | 71.4 | 79.0 | | Last | Dual-RAIL | 45.2 | 94.4 | 74.7 | 70.7 | 87.3 | 97.9 | 86.5 | 92.8 | 91.9 | 81.7 | 76.7 | 81.8 | | _ | CoLeCLIP | 48.1 | 73.1 | 65.2 | 69.6 | 84.0 | 96.2 | 90.9 | 94.6 | 93.5 | 82.6 | 79.3 | 79.7 | | | DPeCLIP | 49.9 | 84.2 | 83.2 | 71.1 | 97.0 | 95.8 | 92.0 | 99.4 | 93.9 | 84.5 | 80.2 | 84.6 | | | ConDU(FT) | 58.6 | 90.8 | 86.3 | 74.0 | 96.3 | 93.4 | 91.9 | 99.6 | 94.7 | 84.9 | 80.1 | 86.4 | | | ConDU(LoRA) | 48.4 | 94.4 | 87.3 | 77.1 | 94.1 | 94.3 | 90.8 | 96.2 | 90.8 | 84.3 | 78.1 | 85.1 | ## **Analysis**: Theoretical Analysis **Theorem F.3** (Convergence of Iteration). Given n initial delta models δ^i , where $i \in [1, \ldots, n]$, after infinitely many iterations, if the relative order of λ^i values remains unchanged and $\forall i \neq j$, $\{k \mid M_k^i = 1 \text{ and } M_k^j = 1\} \neq \emptyset$, then these n delta models will converge to a uniquely determined set of n delta models. **Theorem F.5.** If an initial delta model δ^1 is given, and during the n-th operation, a new delta model δ^n is added, and the current set of delta models $\{\delta^i(n) \mid i \in \{1, \dots, n+1\}\}$ undergoes one iteration, then under the same conditions as Theorem F.3, and assuming all δ^i are independent and identically distributed, we have: - 1. The probability of any $M_k^i(j)$ changing becomes negligible as n increases. - 2. For each position in $\epsilon_{uni}(j)$, the probability of selecting a different corresponding delta model is small, and even if changes occur, their impact is minimal. **Corollary F.6.** *Under the same conditions as Theorem F.5, the following holds:* $$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \|\delta^{i}(n) - \delta^{i}(n-1)\|_{1} = 0.$$ ## Analysis: Visualization We perform t-SNE visualization of features extracted from training data of 10 categories from Task1 (AirCraft) Fig 1:Pre-trained Model Fig 3:Session 1 Fig 2:Session 1 Fig 4:Session 6 Fig 5:Session 11 - From Fig1 and Fig2, the fine-tuned taskspecific model 1 shows significantly better data discrimination on Task1 compared to the pre-trained VLM - Fig3 to Fig5 indicates that the task-specific model reconstructed by ConDU closely matches the representation ability of the model obtained through initial fine-tuning. # Thanks!